Ora2Pg

Presentation, best practices
and roadmap

Synopsis

Historic and general
Installation

Best practices

- Common configuration

- Schema migration

- Data migration

- Stored procedures migration
- Unitary tests

PL/SQL to PLPGSQL conversion
Ora2Pg roadmap

Historic 1/2

= Created in 2000

= First a data duplication tool from Oracle to
PostgreSQL

= Copy Oracle to PostgreSQL tables (+/- some
columns)

= An Oracle database scanner / reverse
engineering

> Difficult to obtain all iInformations
= Oracletool (http://www.oracletool.com/))
= Perl Web tool for Oracle DBAs - Adam vonNieda

http://www.oracletool.com/

Historic 2/2

= Oracle to PostgreSQL database migration tool

- First official release: may 2001

- 2002 : Ora2Pg was added to the contrib/ repository
of PostgreSQL v7.2

» 2006 : It has been removed from the contrib/
repository of PostgreSQL v8.2

- 2008 : Ora2Pg moves to PgFoundry
- 2010 : Ora2Pg web site => http://ora2pg.darold.net/
- 2011 : release are now hosted on SourceForge.net

= Current release: Ora2Pg 8.8

About Oracle to PostgreSQL

= Demystify the Oracle database migration
= Automatic migration are rarely possible
= Compatibility layers are slow

= Other migration tools

= Orafce (http://pgfoundry.org/projects/orafce/)
= EnterpriseDB Advanced Server Plus
= Bull (http://www.bull.us/liberatedb/)

= NO miracle, It need at least some rewrite

Code design

= Ora2Pg.pm - main Perl module used to
interfacing with Oracle and allowing all kind of
exports.

= Ora2Pg/PSQL.pm - module used to convert
Oracle PL/SQL code into PLPGSQL code.

= ora2pg — Perl script used as frontend to the
Perl modules.

= ora2pg.conf - configuration file used to define
the behaviors of the Perl script ora2pg and the
action to do.

= Oracle >= 8i client or server installed

= PostgreSQL >= 8.4 client or server installed
= Perl 5.8+ and DBI/DBD::Oracle Perl modules
= Windows : Strawberry Perl 5.10+

= Optionals Perl modules:

- DBD::Pg — for direct import into PostgreSQL
- Compress::Zlib — to compress output files on the fly

= Multi-threading : Perl compiled with thread
support

- perl -V | grep "useithread=defined”

Installation 1/2

= Oracle / PostgreSQL : follow your system
Installation documentation.

= Define the ORACLE_HOME environment variable
Export ORACLE_HOME-=/ustr/lib/oracle/10.2.0.4/client64

= File thsnames.ora

cat <<EOF > $ORACLE_HOME/network/admin/tnsnames.ora
XE = (DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP) (HOST = 192.168.1.10) (port = 1521))
(CONNECT _DATA = (SERVER = DEDICATED) (SERVICE_NAME = XE))

)
EOF

Installation 2/2

= Verify the Oracle installation using tnsping or
sqlplus.

= Install Perl modules DBD::Oracle et DBD::Pg

= Unix/Linux Install

- perl Makefile.PL
- make && sudo make install
= Windows install
= perl Makefile.PL
= dmake && dmake install
= Install manually ora2pg.pl et ora2pg.conf

Workspace 1/2

mig project/
mig config/
ora2pg.conf

mig schema/

users/ tables/ sequences/ views/
triggers/ functions/ procedures/
types/ packages/ tablespaces/

mig source/
oraviews/ oratriggers/ oratypes/
orafunctions/ oraprocedures/
Orapackages/

mig data/

Workspace 2/2

= Script to create automatically the workspace

#!/bin/sh
mkdir mig project/ && cd mig project/

for d in users tables sequences views triggers functions
procedures types packages tablespaces

do
mkdir -p mig schema/$d
done
for d in oratypes oraviews oratriggers orafunctions oraprocedures
orapackages
do

mkdir -p mig source/$d
done
mkdir mig config/
mkdir mig data/
cp -n /etc/ora2pg/ora2pg.conf mig config/

Common configuration 1/4

= Oracle database connection: DataSourceName

- ORACLE_DSN dbi:Oracle:host=192.168.1.10;sid=XE
- ORACLE_USER hr
- ORACLE_PWD mypassphrase

= Oracle connection user: DBA or not

= DBA Is mandatory to export GRANT, TYPE and
TABLESPACE (need access to DBA_* tables)

= |f non DBA user, Ora2Pg will need to be
Informed to look at ALL_* tables

- USER_GRANTS 1

Common configuration 2/4

= Oracle schema should be exported into PG ?
- EXPORT_SCHEMA 1
- QOracle schema list : ora2pg -t SHOW_ SCHEMA
= |s there's some tables to exclude from export ?
- EXCLUDE tablel table?2 table3
- oracle tables list : ora2pl -t SHOW_ TABLE
= Some tables or columns need to be renamed ?

- REPLACE_TABLES
- REPLACE_COLS
- Qracle columns of a given table:
- orazpl -t SHOW_COLUMN -x TABLE _NAME

Common configuration 3/4

= What is the Oracle database encoding ?

NLS LANG AMERICAN AMERICA.UTF8
- oraz2pg -t SHOW_ ENCODING

The NLS_LANG value is obtained by concatenating the
NLS LANGUAGE, NLS_TERRITORY and
NLS CHARACTERSETS values.

- Example : FRENCH_FRANCE.WES8ISO8859P1

= Automatic conversion to PostgreSQL encoding
- CLIENT_ENCODING LATIN9

= The character set in PostgreSQL
- http://www.postgresql.org/docs/9.1/static/multibyte.html

A\

A\

Common configuration 4/4

DATA LIMIT 10000
DROP_FKEY 0
DISABLE TABLE TRIGGERS 0
FILE PER_CONSTRAINT 1
FILE PER INDEX 1
FILE PER TABLE 1
FILE PER_FUNCTION 1
TRUNCATE TABLE 1
PG SUPPORTS WHEN 1
PG SUPPORTS_ INSTEADOF 1
STANDARD CONFORMING STRINGS 1

Schema migration 1/4

= Different kind of export:

- TABLESPACE - GRANT - TYPE
- TABLE - SEQUENCE - VIEW - TRIGGER
- FUNCTION - PROCEDURE - PACKAGE

= Export choice by modification of the
configuration file or the use of INCLUDE

= More flexible with options -t, -0, -b at command
line:
> -t EXPORT_NAME : kind of export

- -0 FILENAME : output file suffix (output.sqgl)
- -b DIRECTORY : output directory of the export files

Schema migration 2/4

export ora2pg_conf=mig_configs/ora2pg.conf

ora2pg -t TABLE -o table.sqgl -b mig_schemal/tables -c $ora2pg_conf

ora2pg -t SEQUENCE -0 sequences.sql -b mig_schema/sequences -c $ora2pg_conf
ora2pg -t GRANT -o users.sql -b mig_schema/users -c $ora2pg_conf

ora2pg -t TABLESPACE -o tablespaces.sql -b mig_schema/tablespaces -c $ora2pg_conf

ora2pg -p -t TYPE -o types.sql -b mig_schemal/types -c $ora2pg_conf

ora2pg -p -t VIEW -o views.sgl -b mig_schemal/views -c $ora2pg_conf

ora2pg -p -t TRIGGER -o triggers.sqgl -b mig_schemal/triggers -c $ora2pg_conf
ora2pg -p -t FUNCTION -o functions.sgl -b mig_schema/functions -c $ora2pg_conf
ora2pg -p -t PROCEDURE -0 procs.sql -b mig_schema/procedures -c $ora2pg_conf
ora2pg -p -t PACKAGE -o packages.sql -b mig_schema/packages -c $ora2pg_conf

ora2pg -t TYPE -o types.sql -b mig_schema/oratypes -c $ora2pg_conf

ora2pg -t VIEW -o views.sgl -b mig_schema/oraviews -c $ora2pg_conf

ora2pg -t TRIGGER -o triggers.sql -b mig_schemal/oratriggers -c $ora2pg_conff
ora2pg -t FUNCTION -o functions.sgl -b mig_schema/orafunctions -c $ora2pg_conf
ora2pg -t PROCEDURE -o procs.sql -b mig_schema/oraprocedures -c $ora2pg_conf
ora2pg -t PACKAGE -o packages.sql -b mig_schema/orapackages -c $ora2pg_conf

Schema migration 3/4

= Create the Pg database owner:

- createuser --no-superuser --no-createrole --no-createdb miguser

= Working with schema (EXPORT_SCHEMA)
= ALTER ROLE miguser SET search_path TO "migschema",public;

= Create the Pg database:

- createdb -E UTF-8 --owner miguser migdb

= Create the database objects:

- psql -U miguser -f sequences/sequences.sql migdb >
create_migdb.log 2>&1

- psqgl -U miguser -f tables/tables.sql migdb >> create _migdb.log
2>&1

Schema migration 4/4

= Look into log file and study the problems

>

>

>

Bad encoding in the CKECK constraint values for example

Specific Oracle code found into constraints or indexes
definition

PostgreSQL reserved words found into tables or colums
names (ex: comment, user)

Usage of user defined Oracle types, see TYPE export

= Error in SQL code sample:

CREATE INDEX idx_userage ON user
(to_number(to_char('YYYY', user_age)));

CREATE INDEX idx_userage ON «user» (date_part(‘year’,
user_age));

Data migration 1/3

= Export data as COPY statements into text file:

- ora2pg -t COPY -o datas.sqgl -b mig_data/ -c
mig_config/ora2pg.conf

= I[mport data into PostgreSQL database:

- psqgl -U miguser -f mig_data/datas.sql migdb >>
migdb_data.log 2>&1

= Restore constraints and indexes:

= psgl -U miguser -f
mig_schema/tables/CONSTRAINTS table.sqgl migdb >>
migdb_data.log 2>&1

= psgl -U miguser -f mig_schemal/tables/INDEXES table.sql
migdb >> migdb_data.log 2>&1

Data migration 2/3

= Exporting Oracle's BLOB into bytea is very slow
because of the escaping of all data

= Exclude tables with bytea column from the
global data export using EXCLUDE directive

= Activate multi-threading when exporting the
bytea tables using the TABLES directive

- THREAD_COUNT set to Ncore (<= 5 above there's no real
performance gain)

= DATA_ LIMIT setto 5000 max to not OOMing
= With huge data use an ETL (Kettle for example)

Data migration 3/3

= Exporting data with composite type

- Inserting sample into oracle:
Insertinto T_TEST (ID,0BJ) Values (1,"TEST _TYPE_ A"(13,'0b}"));

- Export by Ora2Pg
INSERT INTO t_test (id,obj) VALUES (1,ARRAY (0x8772fb8));
COPY "t_test" (“id","obj") FROM stdin;
1 ARRAY(0xa555fh8)
\.
= Solving this required to know the columns type

of the composite type before proceeding to the
data export => Ora2Pg v9.x

Stores procedures migration 1/2

= Loading of functions and procedures

- psql --single-transaction -U miguser -f
procedures/procedures.sqgl migdb

- psql --single-transaction -U miguser -f functions/functions.sql
migdb

= Load packages of functions

= psgl --single-transaction -U miguser -f
packages/packages.sqgl migdb

= Import files dedicated to each function of each
package (one subdirectory per packages)

= Exit on error: \set ON_ ERROR_STOP ON

Stores procedures migration 2/2

Missing Oracle PL/SQL Code ?

Use COMPILE SCHEMA configuration
directive to force Oracle to validate the PL/SQL

code before export.

= or do it yourself : DBMS_UTILITY.compile_schema (schema =>
sys_context(USERENV', 'SESSION_USER));

= Activate EXPORT INVALID to export all Oracle
PL/SQL code.

- By default Ora2Pg will export only Oracle code set
as VALID.

= Ora2Pg preserve comments into function code

Unitary tests

= |t is really important to validate the stored
procedure code and that is working the same
way as In Oracle

= |t Is almost possible that the results differ:

= either slightly, for example with the number of
decimals after the dot.

= either heavily, despite the PL/PGSQL code has
been loaded without errors.

= PL/pgsqgl debugger

- Edb-debugger (http://pgfoundry.org/projects/edb-debugger/)
- Pavel Stehule's plpgsqgl_lint (http:/kix.fsv.cvut.cz/~stehule/download/)

http://pgfoundry.org/projects/edb-debugger/

PL/SQL to PLPGSQL rewrite 1/5

= Complete rewrite of triggers, functions, procedures and
packages headers

= Replacement of NVL by coalesce()
= Replacement of trunc() into date_trunc('day,...)

= Replacement of SYSDATE by LOCALTIMESTAMP (same as
CURRENT_TIMESTAMP without timezone)

= Remove of FROM DUAL call
= Rewrite calls to sequences (nhame.nextval —» nextval(‘name'))
= Replace calls to MINUS by EXCEPT

= Replace all Oracle types into variable definitions into
corresponding PostgreSQL type

PL/SQL to PLPGSQL rewrite 2/5

= Replace dup _val on_index by unigue_violation
= Replace raise _application _error by RAISE EXCEPTION

= Replace Oracle DBMS_OUTPUT.(put_line|put|new_line) into
RAISE NOTICE call

= Remove of DEFAULT NULL which is the default value with
PostgreSQL when no default value is given

= Rewrite cursor declaration to make them compatibles with
PostgreSQL

= Rewrite of RAISE EXCEPTION with concatenation || by the
format a la sprintf used by PostgreSQL

PL/SQL to PLPGSQL rewrite 3/5

Add reserved keyword STRICT to the SELECT ... INTO when
an EXCEPTION ... NO_DATA FOUND or TOO_MANY_ROW
Is found

Remove object's name repeated after the END keyword, for
example : "END fct_name;” is rewritten into "END;”

Replacement of "WHERE ROWNUM = N” or "AND ROWNUM =
N” by "LIMIT N”

Moves comments into CASE between the WHEN and the
THEN keywords at top of the clause, this is not supported by
PostgreSQL

Rewrite the HAVING ... GROUP BY clause order by GROUP
BY ... HAVING, inverted under PostgreSQL

Rewrite calls to functions add_months et add_years into "+ 'N
months/year'::interval”

PL/SQL to PLPGSQL rewrite 4/5

= Replacement of conditions IS NULL and IS NOT NULL by
Instructions based on coalesce (for Oracle, an empty string Is
the same as NULL)

= Replacement of SQLCODE by his equivalent SQLSTATE under
PostgreSQL

= Replacement of TO_NUMBER(TO_CHAR(...)) en
to_char(...)::integer, in PostgreSQL the to_number() needs two
parameters

= Replacement of SYS EXTRACT_UTC by AT TIME ZONE
'UTC'

= Reverting min and max limits into the FOR ... IN ... REVERSE
min .. max loop

PL/SQL to PLPGSQL rewrite 5/5

= Replacement of cursor loop exit EXIT WHEN ...20NOTFOUND
by IF NOT FOUND THEN EXIT; END IF;

= Replacement of SQL%NOTFOUND by NOT FOUND
= Replacement of SYS REFCURSOR by REFCURSOR

= Replacement of INVALID _CURSOR by
INVALID CURSOR_STATE

= Replacement of ZERO_ DIVIDE by DIVISION_BY ZERO
= Replacement of STORAGE_ERROR by OUT_OF MEMORY

= This code is into the Perl module Ora2pg/PLSQL.pm and the
function: plsgl_to_plpgsqgl()

Ora2Pg roadmap

Source code should be hosted on github.org

Add an option to create a skeleton of project
with export/import scripts creation

Add an option to evaluate the cost of an Oracle
database migration - ESTIMATE_COST

Add an option to only extract a report on the
Oracle database content

Allow to modify data on the fly by calling a
function following the type, table or column

Allow data export of composites type and XML

Questions ?

= http://ora2pg.darold.net/
= http://sourceforge.net/projects/ora2pg/
= gilles [at] darold [dot] net

Http:/12011.pgDay.eu/ , Amsterdam

http://ora2pg.darold.net/
http://sourceforge.net/projects/ora2pg/
http://2011.pgDay.eu/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32

