
  

Oracle to PostgreSQL Migration:
a hard way ?

PgConf.RU 2015
Moscow, Feb. 7

< gilles@darold.net >

mailto:gilles@darold.net


  

● Author : Gilles Darold
– Works at Dalibo (http://www.dalibo.com/) as PostgreSQL 

consultant

● Author and maintainer of
– Ora2Pg (http://ora2pg.darold.net)

– PgBadger (http://dalibo.github.io/pgbadger/)

– PgCluu (http://pgcluu.darold.net)

– PgFormatter (http://sqlformat.darold.net)

– … and more (http://www.darold.net)

About me

http://www.dalibo.com/
http://ora2pg.darold.net/
http://dalibo.github.io/pgbadger/
http://pgcluu.darold.net/
http://sqlformat.darold.net/
http://www.darold.net/


  

● Ora2Pg, first release on May 2001 (last version: 15.1)
– 14 years of development !

– Near 10,000 lines of Perl code

– What users say about Ora2Pg?
● « Terrific program! »
● « You save my life! »
● « Invaluable! »

● Where are we now ?
– Hundred of Oracle database migration

– Industrial deployment of Ora2Pg
● When one database is migrated others follow
● Some others can not because of editor's locks

– Ask PostgreSQL support to software editors !

About Ora2Pg



  

2015 – What Ora2Pg can do ?

● Automatic Oracle database discovery
● Automatic creation of migration projects
● Oracle database migration cost assessment
● Automatic database schema export
● Full and automatic data export
● Automatic conversion of PL/SQL to PLPGSQL
● Oracle Spatial to PostGis export



  

Automatic discovery

● Set the Oracle connection DSN
– ora2pg -u system -w manager -t SHOW_VERSION --source 

« dbi:Oracle:host=localhost;sid=testdb »

● Set the configuration file /etc/ora2pg/ora2pg.conf
– ORACLE_DSN      dbi:Oracle:host=localhost;sid=testdb

– ORACLE_USER    system

– ORACLE_PWD      manager

● Look for schema to export and set it into configuration file:
– ora2pg -c /etc/ora2pg/ora2pg.conf -t SHOW_SCHEMA

– SCHEMA HR

● Lookup database tables and columns:
– ora2pg -c /etc/ora2pg/ora2pg.conf -t SHOW_TABLE

– ora2pg -c /etc/ora2pg/ora2pg.conf -t SHOW_COLUMN



  

ora2pg --init_project my_db_mig  --project_base /full/path/to/project
 

/full/path/to/project/my_db_mig/

            ├── config/

            │   └── ora2pg.conf

            ├── data/

            ├── export_schema.sh

            ├── reports/

            ├── schema/

            │   ├── dblinks/  functions/  grants/  mviews/  packages/

            │   ├── partitions/  procedures/  sequences/  synonyms/

            │   └── tables/  tablespaces/ directories/  triggers/  types/  views/

            └── sources/

                ├── functions/  mviews/  packages/  partitions/

                └── procedures/  triggers/  types/  views/

Create a migration project



  

Migration assessment

● What database might be migrated first ?
– Don't choose the Oracle Application database, you will fail !

– Choose the smallest with few PL/SQL to learn Ora2Pg usage

– Then choose the most representative, you need to forge your experience

● But how much human-days this work will cost me?
– Buy an expensive audit

– Use Ora2Pg migration assessment report

ora2pg -c /etc/ora2pg.conf -t SHOW_REPORT --estimate_cost 
--dump_as_html > report.html



  



  

Schema migration

● Almost everything is exported :
– table, constraint, index, sequence, trigger, view, tablespace, grant, type, partition

– procedure, function, package, synonym, database link, materialized view, ...

● but some are not exported and need adaptation :
– IOT / Cluster indexes can be replaced by « CLUSTER table_name USING 

index_name ».

– Bitmap indexes are internally build by PostgreSQL when needed.

– Reverse indexes can be replaced by a trigram-based index (see pg_trgm) or a 
reverse() function based index and search.

– Type inheritance and type with member method are not supported

– Global indexes over partitions are not supported

– Global Temporary Table does not exists

– Virtual Columns does not exists, use view instead

– Compound triggers are not supported



  

DATA migration

● Can you migrate Big data ?
– Tera bytes of data and billions of rows in tables takes hours

– Purge or archive unused or rarely used data

– Import live data first, open to production then import remaining data 

● The Oracle and PostgreSQL database must be responsive
– Parallel table export (-P ncores)

– Multiple process to fill PostgreSQL tables (-j ncores)

– Multiprocess to extract data from Oracle (-J ncores)

– Both ? (-J ncores x -j ncores) 

● Simple table (only columns with numbers) : +1 millions rows / second
● Complex table (lot of CLOB and/or BLOB) : 100 rows / second
● Always use COPY data export mode, INSERT is too slow



  

What's new

● Version 15.0 Ora2Pg has cool new features:

– Autonomous transaction

– Database Link

– External table

– BFILE

– DIRECTORY

– SYNONYM

– More Spatial support



  

Autonomous transactions

● Autonomous transactions are not natively supported by 
PostgreSQL.

● Ora2Pg use a wrapper function to call the function through 
DBLINK
– The original function is renamed with suffix '_atx'

– The wrapper function take the name of the original function

● Waiting for pg_background
– run commands in a background worker, and get the results.

– Work in progress by Robert Haas - EnterpriseDB



  

Autonomous transaction

CREATE OR REPLACE FUNCTION log_action (msg text)  RETURNS VOID AS 
$body$

DECLARE

        -- Change this to reflect the dblink connection string

        v_conn_str  text := 'port=5432 dbname=testdb host=localhost user=pguser 
password=pgpass';

        v_query     text;

BEGIN

        v_query := 'SELECT true FROM log_action_atx ( ' || quote_literal(msg) || ' )';

        PERFORM * FROM dblink(v_conn_str, v_query) AS p (ret boolean);

END;

$body$

LANGUAGE plpgsql STRICT SECURITY DEFINER;



  

DATABASE LINK

● Access objects on a remote database
– CREATE PUBLIC DATABASE LINK remote_service USING 'remote_db';

– SELECT * FROM employees@remote_service;

● Ora2Pg will export it as Foreign Data Wrapper using oracle_fdw
– CREATE SERVER remote_service FOREIGN DATA WRAPPER oracle_fdw 

OPTIONS (dbserver 'remote_db');

– CREATE USER MAPPING FOR current_user SERVER remote_service 
OPTIONS (user 'scott', password 'tiger');

● Remote tables need to be created as FDW tables:
– ora2pg -c ora2pg.conf -t FDW -a EMPLOYEES

– CREATE FOREIGN TABLE employees_fdw (… ) SERVER remote_service 
OPTIONS(schema 'HR', table 'EMPLOYEES');



  

EXTERNAL TABLES
● Oracle EXTERNAL TABLE does not exists internally into PostgreSQL 

– CREATE OR REPLACE DIRECTORY ext_dir AS '/data/ext/';

– CREATE TABLE ext_table (id NUMBER, …) ORGANIZATION EXTERNAL ( DEFAULT DIRECTORY 
ext_dir ACCESS PARAMETERS (… LOCATION ('file_ext.csv')) ) ;

cat /data/ext/file_ext.csv
1234,ALBERT,GRANT,21
1235,ALFRED,BLUEOS,26
1236,BERNY,JOLYSE,34

● Ora2Pg will export them as remote tables using extension file_fdw :

CREATE FOREIGN TABLE ext_tab (

        empno VARCHAR(4), firstname VARCHAR(20),

        lastname VARCHAR(20), age VARCHAR(2)

) SERVER ext_dir OPTIONS(filename '/data/ext/file_ext.csv', format 'csv', delimiter 
',');



  

BFILE

● The BFILE data type stores unstructured binary data in flat files outside the 
database.

● A BFILE column stores a file locator that points to an external file containing 
the data: (DIRECTORY, FILENAME)

● By default Ora2Pg will transform it as bytea by loading file content :
– CREATE TABLE bfile_test (id bigint, bfilecol bytea);

COPY bfile_test (id,bfilecol) FROM STDIN;

1       
1234,ALBERT,GRANT,21\\0121235,ALFRED,BLUEOS,26\\0121236,BERNY,JOL
YSE,34\\012

\.

● DATA_TYPE = BFILE:TEXT, only the path is exported : '/data/ext/file_ext.csv'
● DATA_TYPE = BFILE:EFILE, will use the external_file extension 

– https://github.com/darold/external_file



  

DIRECTORY

● DIRECTORY can be exported to be used with the external_file extension.

(https://github.com/darold/external_file )

INSERT INTO external_file.directories (directory_name, directory_path) 
VALUES ('EXT_DIR', '/data/ext/');

INSERT INTO external_file.directory_roles (directory_name, directory_role, 
directory_read, directory_write) VALUES ('EXT_DIR', 'hr', true, false);

INSERT INTO external_file.directories (directory_name, directory_path) 
VALUES ('SCOTT_DIR', '/usr/home/scott/');

INSERT INTO external_file.directory_roles(directory_name, directory_role, 
directory_read, directory_write) VALUES ('SCOTT_DIR', 'hr', true, true);

https://github.com/darold/external_file


  

SYNONYM

● A synonym is an alias name for objects. They are used to grant access to an 
object from another schema or a remote database.
– CREATE SYNONYM synonym_name FOR object_name [@ dblink];

● SYNONYMs doesn't exists in PostgreSQL
– SET search_path TO other_schema,...

– Ora2Pg will export them as VIEWS :

CREATE VIEW public.emp_table AS SELECT * FROM hr.employees;

ALTER VIEW public.emp_table OWNER TO hr;

GRANT ALL ON public.emp_table TO PUBLIC;

With DBLINK, you have to create a foreign table HR.EMPLOYEES using a 
foreign server (Ora2Pg will warn you to see DBLINK and FDW export type).



  

ROWNUM

● Oracle : SELECT * FROM table WHERE ROWNUM <= 10 
● PostgreSQL : SELECT * FROM table LIMIT 10
● Take care to the result, Oracle's sort ORDER BY is done after 

ROWNUM !!! To have the same behavior than LIMIT
– SELECT * FROM (SELECT * FROM A ORDER BY id) WHERE 

ROWNUM <= 10;

● Ora2Pg replace automatically ending ROWNUM with LIMIT :
– ROWNUM = N rewritten as LIMIT 1 OFFSET N

– ROWNUM < or <= N rewritten as LIMIT N

– ROWNUM > or >= N rewritten as LIMIT ALL OFFSET N

● ROWNUM to enumerate rows, not covered by Ora2Pg
– Need to be rewritten as window function



  

Empty string vs NULL

● A zero length string is NULL in Oracle:
– '' = NULL

● PostgreSQL and SQL standard:
– '' <> NULL

● Constraint violation on Oracle but not in PostgreSQL

CREATE TABLE tempt (

        id NUMBER NOT NULL,

        descr VARCHAR2(255) NOT NULL

) ;

INSERT INTO temp_table (id, descr) VALUES (2, '');

ORA-01400: cannot insert NULL into ("HR"."TEMPT"."DESCR")



  

Empty string vs NULL

● By default Ora2Pg replace all conditions with a test on NULL by a 
call to the coalesce() function.
– (field1 IS NULL) is replaced by (coalesce(field1::text, '') = '')

– (field2 IS NOT NULL) is replaced by (field2 IS NOT NULL AND field2::text 
<> '')

● Default is replacement to be sure that your application will have the 
same behavior.

● You can not insert an empty string into a numeric so the 
replacement is no necessary.

● Set NULL_EQUAL_EMPTY to 0 to disable this automatic 
replacement.



  

PL/SQL to PLPGSL

● All triggers, functions, procedures and packages are exported and 
converted to PLPGSQL by Ora2Pg.
– This will really save your life !

● But some parts are not :
– Global variables in packages, use dedicated tables instead

– Anonymous/initialization block in package, use an init function with this code

– Function created inside an other one, drop the code into a normal function

● Oracle specific code always need to be rewritten :
– External modules (DBMS, UTL, ...)

– CONNECT BY (use CTE « WITH RECURSIVE »)

– OUTER JOIN (+)

– DECODE (Ora2Pg can only transform simple forms)



  

Oracle DBMS modules

● Some are implemented in orafce library

 (https://github.com/orafce/orafce)
– DBMS_OUTPUT

– UTL_FILE

– DBMS_PIPE

– DBMS_ALERT

● Some advanced functionalities are implemented in external 
PostgreSQL tools, contribs or extensions:
– Oracle Advanced Queuing => see PGQ from Skytools

– Oracle Jobs scheduler => see pgAgent / JobScheduler

● Others can easily be rewritten in extended language like Perl.
– You used to send email from your Oracle database using UTL_SMTP ?

https://github.com/orafce/orafce


  

Example UTIL_SMTP
CREATE OR REPLACE FUNCTION send_email(name,inet, text, text, text) RETURNS integer AS

$body$

use Net::SMTP;

my ($Db, $Ip, $sendTo, $Subject, $Message) = @_;

my $smtp = Net::SMTP->new("mailhost", Timeout => 60);

$smtp->mail("$Db\@$Ip");

$smtp->recipient($sendTo);

$smtp->data();

$smtp->datasend("To: $sendTo\n");

$smtp->datasend("Subject: $Subject\n");

$smtp->datasend("Content-Type: text/plain;\n\n");

$smtp->datasend("$Message\n");

$smtp->dataend();

$smtp->quit();

return 1;

$body$ language 'plperlu';

SELECT send_email(current_database(), inet_server_addr(), 'dba@dom.com', 'test pg_utl_smtp', 'This is a test');



  

Oracle OUTER JOIN (+)

● LEFT OUTER JOIN
– SELECT * FROM a, b WHERE a.id = b.id (+) 

– SELECT * FROM a LEFT OUTER JOIN b ON (id)

● RIGHT OUTER JOIN
– SELECT * FROM  a, b, c WHERE a.id = b.id (+) AND a.id (+) = 

c.id 

– SELECT * FROM a LEFT OUTER JOIN b ON (a. id = b.id) 
RIGHT OUTER JOIN c ON (a.id = c.id)

● FULL OUTER JOIN
– SELECT * FROM a, b WHERE a.id = b.id (+) UNION ALL 

SELECT * FROM a, b WHERE a.id (+) = b.id AND a.id = NULL

– SELECT * FROM a FULL OUTER JOIN b ON (a.id = b.id)



  

Conversion of (+) to ANSI Joins

● Your PL/SQL code if filled of queries like that?
● Your developers still use (+) notation?
● How can you automatically convert this code to 

ANSI-compliant joins syntax?
– Ora2Pg is not able to convert this code, at least not now.

● Please help!!!
– First stop to produce code with (+) notation it is 

recommended by Oracle itself since Oracle 9i.



  

Automatic conversion of (+)

● I can't migrate without automation, it will takes 
months!

Ok, keep calm, Toad is your friend !

Does Oracle SQL Developer too ?



  

Open the TOAD Query Builder



  

then load your SQL code



  

Oracle outer join syntax



  

and the ANSI-compliant Join 



  

Refactor → Convert to ANSI Join Syntax



  

DECODE

● This is an Oracle specific function :
– DECODE (expression, search, result [, search, result]... [, default])

– CASE WHEN expr = search THEN result ... ELSE default END

● You have tons of functions and queries using it!
– Use SQL standard CASE clause or why not the Orafce decode() 

function

● My developers still use it!
– Oracle recommend the use of CASE since 9i

● Please help!!!
– Ora2Pg can only replace simple form of the function up to 10 

parameters

– But remember your friend, TOAD !



  

Refactor → Convert Decode to Case



  

Decode converted to Case



  

Oracle Spatial/Locator type

CREATE TABLE cola_markets (

                mkt_id NUMBER PRIMARY KEY,
                name VARCHAR2(32),
                shape SDO_GEOMETRY
        );

Type SDO_GEOMETRY:

SDO_GEOMETRY(

    2001,  – Indicates the type of the geometry, here a point

    NULL, -- Identify a coordinate system (SRID: spatial reference system) 

    NULL, -- SDO_POINT attributes X, Y, and Z, all of type NUMBER

    SDO_ELEM_INFO_ARRAY(1,1,1), --  Element informations array

    SDO_ORDINATE_ARRAY(10, 5) -- Coordinates Array

  ) 



  

PostGis Spatial type

● Corresponding type in PostGis : GEOMETRY

        CREATE TABLE cola_markets (
                mkt_id bigint PRIMARY KEY,
                name varchar(32),
                shape geometry(GEOMETRY)
        );

● Type GEOMETRY :
– WKT (Well-Know Text)

●  Ex: 'LINESTRING(0 0, 1 1, 2 1, 2 2)'

– WKB (Well-Know Binary)
● Ex : 010100002004000000000000000000000000000...



  

Geometry Constraints

● With PostGis you can enforce the type of spatial object that 
must be used :

CREATE TABLE stores (

        id  integer,

        gps_position geometry(POINT),

        sale_area geometry(POLYGONZ)

);
● 3D objects are signified with suffix Z and 4D using ZM :

– GEOMETRY / GEOMETRYZ / GEOMETRYZM

– POINT / POINTZ / POINTZM

– POLYGON / POLYGONZ / POLYGONZM



  

Default geometry

● You can mixed several geometry types  (points / lines / 
polygons…) in the same column.

– shape geometry(GEOMETRY)

– shape geometry(GEOMETRY, 4326)

● This correspond to the generic use of the GEOMETRY type.
● This is the default type used by Ora2Pg. 



  

SRID

● SRID : Spatial reference system
● Oracle "legacy" vs standard "EPSG"

– CONVERT_SRID 1

● Conversion function : map_oracle_srid_to_epsg()
– Returns often NULL 

– DEFAULT_SRID    4326

●  To enforce the use of a particular SRID :
– CONVERT_SRID 27572



  

Detecting geometry constraint 

● Ora2Pg is able to detect the geometry type of a column by
– Looking at the constrained type in parameters of spatial indexes

● Ex : CREATE INDEX ... PARAMETERS ('sdo_indx_dims=2, layer_gtype=line'); 

– Or using a sequential scan to search distinct geometry types
● AUTODETECT_SPATIAL_TYPE 1
● When only one geometry type is found, it is applied as constraint

● Sequential scan is only used when there's no constraint type 
defined.

● it need to be limited or the whole table will be scanned
– SELECT DISTINCT c.SDO_GTYPE FROM MYTABLE c WHERE 

ROWNUM < ?;
● AUTODETECT_SPATIAL_TYPE = 1 then ROWNUM=50000 by default
● AUTODETECT_SPATIAL_TYPE > 1, ROWNUM=AUTODETECT_SPATIAL_TYPE



  

Inserting geometry : Oracle

A simple rectangle inserted into Oracle :

INSERT INTO cola_markets VALUES (

    302, 'Rectangle',

    SDO_GEOMETRY(

        2003,  -- 2D polygon

        8307,

        NULL,

        SDO_ELEM_INFO_ARRAY(1,1003,3), -- a rectangle

        SDO_ORDINATE_ARRAY(1,1, 5,7) -- 2 points define the rectangle

    )

);

INSERT INTO cola_markets VALUES (302, 'Rectangle', GeomFromText('POLYGON 
((1.0 1.0, 5.0 1.0, 5.0 7.0, 1.0 7.0, 1.0 1.0))'));



  

Inserting geometry : PostGis

Same rectangle inserted into PostgreSQL using WKT :

INSERT INTO cola_markets (mkt_id,name,shape) VALUES (

        302,

        'rectangle',

        'POLYGON ((1.0 1.0, 5.0 1.0, 5.0 7.0, 1.0 7.0, 1.0 1.0))'

);

And WKB:

INSERT INTO cola_markets VALUES (302,'rectangle', 
'01ea030000030000000000000000000000000000000000000000000000
00000000000000000000f03f00000000000000000000000000000000000
000000000f03f000000000000f03f0000000000000040');



  

Spatial data export

● Ora2Pg first lookup for SRID by querying the 
ALL_SDO_GEOM_METADATA table.

● Then export data as EWKT, using COPY mode:

COPY cola_markets (mkt_id,name,shape) FROM STDIN;

301     polygon SRID=4326;POLYGON ((5.0 1.0, 8.0 1.0, 
8.0 6.0, 5.0 7.0, 5.0 1.0))

\.
● Or when using INSERT mode:

INSERT INTO cola_markets (mkt_id,name,shape) 
VALUES (301,E'polygon',ST_GeomFromText('POLYGON 
((5.0 1.0, 8.0 1.0, 8.0 6.0, 5.0 7.0, 5.0 1.0))',4326));



  

Spatial Indexes

Oracle spatial indexes

CREATE INDEX cola_spatial_idx

   ON cola_markets(shape)

   INDEXTYPE IS MDSYS.SPATIAL_INDEX;

PostgreSQL spatial index

CREATE INDEX cola_spatial_idx

    ON cola_markets USING gist(shape);



  

Supported Geometries

● 2D and 3D geometry are exported
● SDO_POINT
● UNKNOWN_GEOMETRY
● POINT
● POLYGON
● COLLECTION
● MULTIPOINT
● MULTILINE or MULTICURVE
● MULTIPOLYGON
● Unsupported: CIRCLE, RASTER



  

Spatial Function

Ora2Pg replace all call to SDO_* functions into PostGis ST_* functions in converted PL/SQL code

        SDO_GEOM.RELATE => ST_Relate

        SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT => ST_IsValidReason

        SDO_GEOM.WITHIN_DISTANCE => ST_DWithin

        SDO_DISTANCE => ST_Distance

        SDO_BUFFER => ST_Buffer

        SDO_CENTROID => ST_Centroid

        SDO_UTIL.GETVERTICES => ST_DumpPoints

        SDO_TRANSLATE => ST_Translate

        SDO_SIMPLIFY => ST_Simplify

        SDO_AREA => ST_Area

        SDO_CONVEXHULL => ST_ConvexHull

        SDO_DIFFERENCE => ST_Difference

        SDO_INTERSECTION => ST_Intersection

        SDO_LENGTH => ST_Length

        SDO_POINTONSURFACE => ST_PointOnSurface

        SDO_UNION => ST_Union

        SDO_XOR => ST_SymDifference



  

The hidden part of the magic

● Aka, the todo list:
– Use regexp only => need a real PL/SQL parser/lexer

● Ora2Pg replace sometime SELECT by PERFORM wrongly
● Replacement of complex form of code

– Hash and multicolumn partitioning

– Add a mechanism to handle global variables in packages

– Allow user custom function to modify data on the fly

– Allow incremental data migration

– Embedded SQL code formatter

– Parallelized creation of indexes and constraint

– ...



  

Tools equivalence 1/3

● SQLPLUS: PSQL but much more
● TOAD / Oracle SQL Developper: TORA (http://torasql.com/) or pgAdmin
● EXPLAIN PLAN: EXPLAIN ANALYZE
● ANALYZE TABLE: ANALYZE
● Cold backup: both are file system backup
● Hot backup: REDOLOGS = ARCHIVELOGS
● Logical Export: exp = pg_dump
● Logical Import: imp = pg_restore or psql
● SQL Loader: pgLoader (http://pgloader.io/)
● RMAN: Barman (http://www.pgbarman.org/) or Pitrery (

https://dalibo.github.io/pitrery/)
● AUDIT TRAIL: pgAudit (https://github.com/2ndQuadrant/pgaudit) 

http://torasql.com/
http://pgloader.io/
http://www.pgbarman.org/
https://dalibo.github.io/pitrery/
https://github.com/2ndQuadrant/pgaudit


  

● Pooling / Dispatcher:
– PgBouncer (http://pgfoundry.org/projects/pgbouncer)

– PgPool (http://www.pgpool.net/)

● Active Data Guard:
– PostgreSQL master / slave replication

– Slony (http://slony.info/)

● Replication master / master:
– PostgreSQL-XC (http://sourceforge.net/projects/postgres-xc/)

– Bucardo (https://bucardo.org/)

● Logical replication:
– PostgreSQL 9.5 / 10 ?

– Slony

● Official binary packages for all these projects can be found at http://yum.postgresql.org 
or  http://apt.postgresql.org

Tools equivalence 2/3

http://pgfoundry.org/projects/pgbouncer
http://www.pgpool.net/
http://slony.info/
http://sourceforge.net/projects/postgres-xc/
https://bucardo.org/
http://yum.postgresql.org/
http://apt.postgresql.org/


  

Tools equivalence 3/3

● RAC Horizontal scaling: PostgreSQL-XC – PostgreSQL-XL -   
plProxy, pg_shard

● Oracle => Postgres Plus Advanced Server
– Same as PostgreSQL but with proprietary code and database feature 

compatibility for Oracle.

– Compatible with applications written for Oracle.

– No need to rewrite PL/SQL into PLPGSQL

– Applications written for Oracle run on Postgres Plus Advanced Server 
without modification.

– http://www.enterprisedb.com/

● This is not an exhaustive list of the existing tools, there's much more 
interesting projects. 

http://www.enterprisedb.com/


  

Monitoring / Audit tools
● PgBadger: A fast PostgreSQL log analyzer

– http://dalibo.github.io/pgbadger/

● PgCluu: PostgreSQL and system performances monitoring and auditing tool
– http://pgcluu.darold.net/

● Powa: PostgreSQL Workload Analyzer. Gathers performance stats and provides real-time charts and 
graphs to help monitor and tune your PostgreSQL servers. Similar to Oracle AWR.
– http://dalibo.github.io/powa/

● PgObserver: monitor performance metrics of different PostgreSQL clusters.
– http://zalando.github.io/PGObserver/

● OPM: Open PostgreSQL Monitoring. Gather stats, display dashboards and send warnings when something 
goes wrong. Tend to be similar to Oracle Grid Control.
– http://opm.io/

● check_postgres: script for monitoring various attributes of your database. It is designed to work with 
Nagios, MRTG, or in standalone scripts.
– https://bucardo.org/wiki/Check_postgres

● Pgwatch: monitor PostgreSQL databases and provides a fast and efficient overview of what is really going 
on.
– http://www.cybertec.at/en/products/pgwatch-cybertec-enterprise-postgresql-monitor/

● More tools at https://wiki.postgresql.org/wiki/Monitoring

http://dalibo.github.io/pgbadger/
http://pgcluu.darold.net/
http://dalibo.github.io/powa/
http://zalando.github.io/PGObserver/
http://opm.io/
https://bucardo.org/wiki/Check_postgres
http://www.cybertec.at/en/products/pgwatch-cybertec-enterprise-postgresql-monitor/
https://wiki.postgresql.org/wiki/Monitoring


  

What else ?

● Other OSS tool that can help to migrate 
– Pentaho Kettle

● http://community.pentaho.com/projects/data-integration/

– JTS Topology Suite for spatial data import
● http://www.vividsolutions.com/jts/JTSHome.htm

– oracle_fdw, with Oracle spatial support since 1.1.0
● http://pgxn.org/dist/oracle_fdw/

– Orafce, Oracle's compatibility functions and packages
● http://pgxn.org/dist/orafce/

● Don't forget to migrate your SQL Server database too :-)
● https://github.com/dalibo/sqlserver2pgsql

http://community.pentaho.com/projects/data-integration/
http://www.vividsolutions.com/jts/JTSHome.htm
http://pgxn.org/dist/oracle_fdw/
http://pgxn.org/dist/orafce/
https://github.com/dalibo/sqlserver2pgsql


  

You are not alone !

Community support on Ora2Pg :
– Any PostgreSQL's forum can help

– Github for feature requests

– Github issues and bugs reports
● https://github.com/darold/ora2pg

– Feedback / suggestion to < gilles@darold.net >

Buy professional help to migrate and commercial support :
– Any PostgreSQL company near from you listed in 

http://www.postgresql.org/support/professional_support/

– Support the community !

https://github.com/darold/ora2pg
mailto:gilles@darold.net
http://www.postgresql.org/support/professional_support/


  

Acknowledgments

● DGFiP (French Public Finance Government) for the migration cost assessment 
sponsoring.
– http://www.impots.gouv.fr/

● BRGM (French Geological and Mining Survey) for the Oracle Spatial to PostGis 
sponsoring.
– http://www.brgm.eu/

● Very specials thanks to Dominique Legendre who help me a lot on Spatial understanding 
and testing Ora2Pg features. He is also the author of the external_file extension.

● Oslandia for Spatial to PostGis specification and for they works on oracle_fdw.
– http://www.oslandia.com/index-en.html

● Dalibo who give me time to develop Ora2Pg and opportunities to work on Oracle to 
PostgreSQL migrations.
– http://www.dalibo.com/

● And all great contributors to Ora2Pg!

http://www.impots.gouv.fr/
http://www.brgm.eu/
http://www.oslandia.com/index-en.html
http://www.dalibo.com/


  

Thanks for your attention

Question ?


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56

