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● Ora2Pg, first release on May 2001 (last version: 15.1)
– 14 years of development !

– Near 10,000 lines of Perl code

– What users say about Ora2Pg?
● « Terrific program! »
● « You save my life! »
● « Invaluable! »

● Where are we now ?
– Hundred of Oracle database migration

– Industrial deployment of Ora2Pg
● When one database is migrated others follow
● Some others can not because of editor's locks

– Ask PostgreSQL support to software editors !

About Ora2Pg



  

2015 – What Ora2Pg can do ?

● Automatic Oracle database discovery
● Automatic creation of migration projects
● Oracle database migration cost assessment
● Automatic database schema export
● Full and automatic data export
● Automatic conversion of PL/SQL to PLPGSQL
● Oracle Spatial to PostGis export



  

Automatic discovery

● Set the Oracle connection DSN
– ora2pg -u system -w manager -t SHOW_VERSION --source 

« dbi:Oracle:host=localhost;sid=testdb »

● Set the configuration file /etc/ora2pg/ora2pg.conf
– ORACLE_DSN      dbi:Oracle:host=localhost;sid=testdb

– ORACLE_USER    system

– ORACLE_PWD      manager

● Look for schema to export and set it into configuration file:
– ora2pg -c /etc/ora2pg/ora2pg.conf -t SHOW_SCHEMA

– SCHEMA HR

● Lookup database tables and columns:
– ora2pg -c /etc/ora2pg/ora2pg.conf -t SHOW_TABLE

– ora2pg -c /etc/ora2pg/ora2pg.conf -t SHOW_COLUMN



  

ora2pg --init_project my_db_mig  --project_base /full/path/to/project
 

/full/path/to/project/my_db_mig/

            ├── config/

            │   └── ora2pg.conf

            ├── data/

            ├── export_schema.sh

            ├── reports/

            ├── schema/

            │   ├── dblinks/  functions/  grants/  mviews/  packages/

            │   ├── partitions/  procedures/  sequences/  synonyms/

            │   └── tables/  tablespaces/ directories/  triggers/  types/  views/

            └── sources/

                ├── functions/  mviews/  packages/  partitions/

                └── procedures/  triggers/  types/  views/

Create a migration project



  

Migration assessment

● What database might be migrated first ?
– Don't choose the Oracle Application database, you will fail !

– Choose the smallest with few PL/SQL to learn Ora2Pg usage

– Then choose the most representative, you need to forge your experience

● But how much human-days this work will cost me?
– Buy an expensive audit

– Use Ora2Pg migration assessment report

ora2pg -c /etc/ora2pg.conf -t SHOW_REPORT --estimate_cost 
--dump_as_html > report.html



  



  

Schema migration

● Almost everything is exported :
– table, constraint, index, sequence, trigger, view, tablespace, grant, type, partition

– procedure, function, package, synonym, database link, materialized view, ...

● but some are not exported and need adaptation :
– IOT / Cluster indexes can be replaced by « CLUSTER table_name USING 

index_name ».

– Bitmap indexes are internally build by PostgreSQL when needed.

– Reverse indexes can be replaced by a trigram-based index (see pg_trgm) or a 
reverse() function based index and search.

– Type inheritance and type with member method are not supported

– Global indexes over partitions are not supported

– Global Temporary Table does not exists

– Virtual Columns does not exists, use view instead

– Compound triggers are not supported



  

DATA migration

● Can you migrate Big data ?
– Tera bytes of data and billions of rows in tables takes hours

– Purge or archive unused or rarely used data

– Import live data first, open to production then import remaining data 

● The Oracle and PostgreSQL database must be responsive
– Parallel table export (-P ncores)

– Multiple process to fill PostgreSQL tables (-j ncores)

– Multiprocess to extract data from Oracle (-J ncores)

– Both ? (-J ncores x -j ncores) 

● Simple table (only columns with numbers) : +1 millions rows / second
● Complex table (lot of CLOB and/or BLOB) : 100 rows / second
● Always use COPY data export mode, INSERT is too slow



  

What's new

● Version 15.0 Ora2Pg has cool new features:

– Autonomous transaction

– Database Link

– External table

– BFILE

– DIRECTORY

– SYNONYM

– More Spatial support



  

Autonomous transactions

● Autonomous transactions are not natively supported by 
PostgreSQL.

● Ora2Pg use a wrapper function to call the function through 
DBLINK
– The original function is renamed with suffix '_atx'

– The wrapper function take the name of the original function

● Waiting for pg_background
– run commands in a background worker, and get the results.

– Work in progress by Robert Haas - EnterpriseDB



  

Autonomous transaction

CREATE OR REPLACE FUNCTION log_action (msg text)  RETURNS VOID AS 
$body$

DECLARE

        -- Change this to reflect the dblink connection string

        v_conn_str  text := 'port=5432 dbname=testdb host=localhost user=pguser 
password=pgpass';

        v_query     text;

BEGIN

        v_query := 'SELECT true FROM log_action_atx ( ' || quote_literal(msg) || ' )';

        PERFORM * FROM dblink(v_conn_str, v_query) AS p (ret boolean);

END;

$body$

LANGUAGE plpgsql STRICT SECURITY DEFINER;



  

DATABASE LINK

● Access objects on a remote database
– CREATE PUBLIC DATABASE LINK remote_service USING 'remote_db';

– SELECT * FROM employees@remote_service;

● Ora2Pg will export it as Foreign Data Wrapper using oracle_fdw
– CREATE SERVER remote_service FOREIGN DATA WRAPPER oracle_fdw 

OPTIONS (dbserver 'remote_db');

– CREATE USER MAPPING FOR current_user SERVER remote_service 
OPTIONS (user 'scott', password 'tiger');

● Remote tables need to be created as FDW tables:
– ora2pg -c ora2pg.conf -t FDW -a EMPLOYEES

– CREATE FOREIGN TABLE employees_fdw (… ) SERVER remote_service 
OPTIONS(schema 'HR', table 'EMPLOYEES');



  

EXTERNAL TABLES
● Oracle EXTERNAL TABLE does not exists internally into PostgreSQL 

– CREATE OR REPLACE DIRECTORY ext_dir AS '/data/ext/';

– CREATE TABLE ext_table (id NUMBER, …) ORGANIZATION EXTERNAL ( DEFAULT DIRECTORY 
ext_dir ACCESS PARAMETERS (… LOCATION ('file_ext.csv')) ) ;

cat /data/ext/file_ext.csv
1234,ALBERT,GRANT,21
1235,ALFRED,BLUEOS,26
1236,BERNY,JOLYSE,34

● Ora2Pg will export them as remote tables using extension file_fdw :

CREATE FOREIGN TABLE ext_tab (

        empno VARCHAR(4), firstname VARCHAR(20),

        lastname VARCHAR(20), age VARCHAR(2)

) SERVER ext_dir OPTIONS(filename '/data/ext/file_ext.csv', format 'csv', delimiter 
',');



  

BFILE

● The BFILE data type stores unstructured binary data in flat files outside the 
database.

● A BFILE column stores a file locator that points to an external file containing 
the data: (DIRECTORY, FILENAME)

● By default Ora2Pg will transform it as bytea by loading file content :
– CREATE TABLE bfile_test (id bigint, bfilecol bytea);

COPY bfile_test (id,bfilecol) FROM STDIN;

1       
1234,ALBERT,GRANT,21\\0121235,ALFRED,BLUEOS,26\\0121236,BERNY,JOL
YSE,34\\012

\.

● DATA_TYPE = BFILE:TEXT, only the path is exported : '/data/ext/file_ext.csv'
● DATA_TYPE = BFILE:EFILE, will use the external_file extension 

– https://github.com/darold/external_file



  

DIRECTORY

● DIRECTORY can be exported to be used with the external_file extension.

(https://github.com/darold/external_file )

INSERT INTO external_file.directories (directory_name, directory_path) 
VALUES ('EXT_DIR', '/data/ext/');

INSERT INTO external_file.directory_roles (directory_name, directory_role, 
directory_read, directory_write) VALUES ('EXT_DIR', 'hr', true, false);

INSERT INTO external_file.directories (directory_name, directory_path) 
VALUES ('SCOTT_DIR', '/usr/home/scott/');

INSERT INTO external_file.directory_roles(directory_name, directory_role, 
directory_read, directory_write) VALUES ('SCOTT_DIR', 'hr', true, true);

https://github.com/darold/external_file


  

SYNONYM

● A synonym is an alias name for objects. They are used to grant access to an 
object from another schema or a remote database.
– CREATE SYNONYM synonym_name FOR object_name [@ dblink];

● SYNONYMs doesn't exists in PostgreSQL
– SET search_path TO other_schema,...

– Ora2Pg will export them as VIEWS :

CREATE VIEW public.emp_table AS SELECT * FROM hr.employees;

ALTER VIEW public.emp_table OWNER TO hr;

GRANT ALL ON public.emp_table TO PUBLIC;

With DBLINK, you have to create a foreign table HR.EMPLOYEES using a 
foreign server (Ora2Pg will warn you to see DBLINK and FDW export type).



  

ROWNUM

● Oracle : SELECT * FROM table WHERE ROWNUM <= 10 
● PostgreSQL : SELECT * FROM table LIMIT 10
● Take care to the result, Oracle's sort ORDER BY is done after 

ROWNUM !!! To have the same behavior than LIMIT
– SELECT * FROM (SELECT * FROM A ORDER BY id) WHERE 

ROWNUM <= 10;

● Ora2Pg replace automatically ending ROWNUM with LIMIT :
– ROWNUM = N rewritten as LIMIT 1 OFFSET N

– ROWNUM < or <= N rewritten as LIMIT N

– ROWNUM > or >= N rewritten as LIMIT ALL OFFSET N

● ROWNUM to enumerate rows, not covered by Ora2Pg
– Need to be rewritten as window function



  

Empty string vs NULL

● A zero length string is NULL in Oracle:
– '' = NULL

● PostgreSQL and SQL standard:
– '' <> NULL

● Constraint violation on Oracle but not in PostgreSQL

CREATE TABLE tempt (

        id NUMBER NOT NULL,

        descr VARCHAR2(255) NOT NULL

) ;

INSERT INTO temp_table (id, descr) VALUES (2, '');

ORA-01400: cannot insert NULL into ("HR"."TEMPT"."DESCR")



  

Empty string vs NULL

● By default Ora2Pg replace all conditions with a test on NULL by a 
call to the coalesce() function.
– (field1 IS NULL) is replaced by (coalesce(field1::text, '') = '')

– (field2 IS NOT NULL) is replaced by (field2 IS NOT NULL AND field2::text 
<> '')

● Default is replacement to be sure that your application will have the 
same behavior.

● You can not insert an empty string into a numeric so the 
replacement is no necessary.

● Set NULL_EQUAL_EMPTY to 0 to disable this automatic 
replacement.



  

PL/SQL to PLPGSL

● All triggers, functions, procedures and packages are exported and 
converted to PLPGSQL by Ora2Pg.
– This will really save your life !

● But some parts are not :
– Global variables in packages, use dedicated tables instead

– Anonymous/initialization block in package, use an init function with this code

– Function created inside an other one, drop the code into a normal function

● Oracle specific code always need to be rewritten :
– External modules (DBMS, UTL, ...)

– CONNECT BY (use CTE « WITH RECURSIVE »)

– OUTER JOIN (+)

– DECODE (Ora2Pg can only transform simple forms)



  

Oracle DBMS modules

● Some are implemented in orafce library

 (https://github.com/orafce/orafce)
– DBMS_OUTPUT

– UTL_FILE

– DBMS_PIPE

– DBMS_ALERT

● Some advanced functionalities are implemented in external 
PostgreSQL tools, contribs or extensions:
– Oracle Advanced Queuing => see PGQ from Skytools

– Oracle Jobs scheduler => see pgAgent / JobScheduler

● Others can easily be rewritten in extended language like Perl.
– You used to send email from your Oracle database using UTL_SMTP ?

https://github.com/orafce/orafce


  

Example UTIL_SMTP
CREATE OR REPLACE FUNCTION send_email(name,inet, text, text, text) RETURNS integer AS

$body$

use Net::SMTP;

my ($Db, $Ip, $sendTo, $Subject, $Message) = @_;

my $smtp = Net::SMTP->new("mailhost", Timeout => 60);

$smtp->mail("$Db\@$Ip");

$smtp->recipient($sendTo);

$smtp->data();

$smtp->datasend("To: $sendTo\n");

$smtp->datasend("Subject: $Subject\n");

$smtp->datasend("Content-Type: text/plain;\n\n");

$smtp->datasend("$Message\n");

$smtp->dataend();

$smtp->quit();

return 1;

$body$ language 'plperlu';

SELECT send_email(current_database(), inet_server_addr(), 'dba@dom.com', 'test pg_utl_smtp', 'This is a test');



  

Oracle OUTER JOIN (+)

● LEFT OUTER JOIN
– SELECT * FROM a, b WHERE a.id = b.id (+) 

– SELECT * FROM a LEFT OUTER JOIN b ON (id)

● RIGHT OUTER JOIN
– SELECT * FROM  a, b, c WHERE a.id = b.id (+) AND a.id (+) = 

c.id 

– SELECT * FROM a LEFT OUTER JOIN b ON (a. id = b.id) 
RIGHT OUTER JOIN c ON (a.id = c.id)

● FULL OUTER JOIN
– SELECT * FROM a, b WHERE a.id = b.id (+) UNION ALL 

SELECT * FROM a, b WHERE a.id (+) = b.id AND a.id = NULL

– SELECT * FROM a FULL OUTER JOIN b ON (a.id = b.id)



  

Conversion of (+) to ANSI Joins

● Your PL/SQL code if filled of queries like that?
● Your developers still use (+) notation?
● How can you automatically convert this code to 

ANSI-compliant joins syntax?
– Ora2Pg is not able to convert this code, at least not now.

● Please help!!!
– First stop to produce code with (+) notation it is 

recommended by Oracle itself since Oracle 9i.



  

Automatic conversion of (+)

● I can't migrate without automation, it will takes 
months!

Ok, keep calm, Toad is your friend !

Does Oracle SQL Developer too ?



  

Open the TOAD Query Builder



  

then load your SQL code



  

Oracle outer join syntax



  

and the ANSI-compliant Join 



  

Refactor → Convert to ANSI Join Syntax



  

DECODE

● This is an Oracle specific function :
– DECODE (expression, search, result [, search, result]... [, default])

– CASE WHEN expr = search THEN result ... ELSE default END

● You have tons of functions and queries using it!
– Use SQL standard CASE clause or why not the Orafce decode() 

function

● My developers still use it!
– Oracle recommend the use of CASE since 9i

● Please help!!!
– Ora2Pg can only replace simple form of the function up to 10 

parameters

– But remember your friend, TOAD !



  

Refactor → Convert Decode to Case



  

Decode converted to Case



  

Oracle Spatial/Locator type

CREATE TABLE cola_markets (

                mkt_id NUMBER PRIMARY KEY,
                name VARCHAR2(32),
                shape SDO_GEOMETRY
        );

Type SDO_GEOMETRY:

SDO_GEOMETRY(

    2001,  – Indicates the type of the geometry, here a point

    NULL, -- Identify a coordinate system (SRID: spatial reference system) 

    NULL, -- SDO_POINT attributes X, Y, and Z, all of type NUMBER

    SDO_ELEM_INFO_ARRAY(1,1,1), --  Element informations array

    SDO_ORDINATE_ARRAY(10, 5) -- Coordinates Array

  ) 



  

PostGis Spatial type

● Corresponding type in PostGis : GEOMETRY

        CREATE TABLE cola_markets (
                mkt_id bigint PRIMARY KEY,
                name varchar(32),
                shape geometry(GEOMETRY)
        );

● Type GEOMETRY :
– WKT (Well-Know Text)

●  Ex: 'LINESTRING(0 0, 1 1, 2 1, 2 2)'

– WKB (Well-Know Binary)
● Ex : 010100002004000000000000000000000000000...



  

Geometry Constraints

● With PostGis you can enforce the type of spatial object that 
must be used :

CREATE TABLE stores (

        id  integer,

        gps_position geometry(POINT),

        sale_area geometry(POLYGONZ)

);
● 3D objects are signified with suffix Z and 4D using ZM :

– GEOMETRY / GEOMETRYZ / GEOMETRYZM

– POINT / POINTZ / POINTZM

– POLYGON / POLYGONZ / POLYGONZM



  

Default geometry

● You can mixed several geometry types  (points / lines / 
polygons…) in the same column.

– shape geometry(GEOMETRY)

– shape geometry(GEOMETRY, 4326)

● This correspond to the generic use of the GEOMETRY type.
● This is the default type used by Ora2Pg. 



  

SRID

● SRID : Spatial reference system
● Oracle "legacy" vs standard "EPSG"

– CONVERT_SRID 1

● Conversion function : map_oracle_srid_to_epsg()
– Returns often NULL 

– DEFAULT_SRID    4326

●  To enforce the use of a particular SRID :
– CONVERT_SRID 27572



  

Detecting geometry constraint 

● Ora2Pg is able to detect the geometry type of a column by
– Looking at the constrained type in parameters of spatial indexes

● Ex : CREATE INDEX ... PARAMETERS ('sdo_indx_dims=2, layer_gtype=line'); 

– Or using a sequential scan to search distinct geometry types
● AUTODETECT_SPATIAL_TYPE 1
● When only one geometry type is found, it is applied as constraint

● Sequential scan is only used when there's no constraint type 
defined.

● it need to be limited or the whole table will be scanned
– SELECT DISTINCT c.SDO_GTYPE FROM MYTABLE c WHERE 

ROWNUM < ?;
● AUTODETECT_SPATIAL_TYPE = 1 then ROWNUM=50000 by default
● AUTODETECT_SPATIAL_TYPE > 1, ROWNUM=AUTODETECT_SPATIAL_TYPE



  

Inserting geometry : Oracle

A simple rectangle inserted into Oracle :

INSERT INTO cola_markets VALUES (

    302, 'Rectangle',

    SDO_GEOMETRY(

        2003,  -- 2D polygon

        8307,

        NULL,

        SDO_ELEM_INFO_ARRAY(1,1003,3), -- a rectangle

        SDO_ORDINATE_ARRAY(1,1, 5,7) -- 2 points define the rectangle

    )

);

INSERT INTO cola_markets VALUES (302, 'Rectangle', GeomFromText('POLYGON 
((1.0 1.0, 5.0 1.0, 5.0 7.0, 1.0 7.0, 1.0 1.0))'));



  

Inserting geometry : PostGis

Same rectangle inserted into PostgreSQL using WKT :

INSERT INTO cola_markets (mkt_id,name,shape) VALUES (

        302,

        'rectangle',

        'POLYGON ((1.0 1.0, 5.0 1.0, 5.0 7.0, 1.0 7.0, 1.0 1.0))'

);

And WKB:

INSERT INTO cola_markets VALUES (302,'rectangle', 
'01ea030000030000000000000000000000000000000000000000000000
00000000000000000000f03f00000000000000000000000000000000000
000000000f03f000000000000f03f0000000000000040');



  

Spatial data export

● Ora2Pg first lookup for SRID by querying the 
ALL_SDO_GEOM_METADATA table.

● Then export data as EWKT, using COPY mode:

COPY cola_markets (mkt_id,name,shape) FROM STDIN;

301     polygon SRID=4326;POLYGON ((5.0 1.0, 8.0 1.0, 
8.0 6.0, 5.0 7.0, 5.0 1.0))

\.
● Or when using INSERT mode:

INSERT INTO cola_markets (mkt_id,name,shape) 
VALUES (301,E'polygon',ST_GeomFromText('POLYGON 
((5.0 1.0, 8.0 1.0, 8.0 6.0, 5.0 7.0, 5.0 1.0))',4326));



  

Spatial Indexes

Oracle spatial indexes

CREATE INDEX cola_spatial_idx

   ON cola_markets(shape)

   INDEXTYPE IS MDSYS.SPATIAL_INDEX;

PostgreSQL spatial index

CREATE INDEX cola_spatial_idx

    ON cola_markets USING gist(shape);



  

Supported Geometries

● 2D and 3D geometry are exported
● SDO_POINT
● UNKNOWN_GEOMETRY
● POINT
● POLYGON
● COLLECTION
● MULTIPOINT
● MULTILINE or MULTICURVE
● MULTIPOLYGON
● Unsupported: CIRCLE, RASTER



  

Spatial Function

Ora2Pg replace all call to SDO_* functions into PostGis ST_* functions in converted PL/SQL code

        SDO_GEOM.RELATE => ST_Relate

        SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT => ST_IsValidReason

        SDO_GEOM.WITHIN_DISTANCE => ST_DWithin

        SDO_DISTANCE => ST_Distance

        SDO_BUFFER => ST_Buffer

        SDO_CENTROID => ST_Centroid

        SDO_UTIL.GETVERTICES => ST_DumpPoints

        SDO_TRANSLATE => ST_Translate

        SDO_SIMPLIFY => ST_Simplify

        SDO_AREA => ST_Area

        SDO_CONVEXHULL => ST_ConvexHull

        SDO_DIFFERENCE => ST_Difference

        SDO_INTERSECTION => ST_Intersection

        SDO_LENGTH => ST_Length

        SDO_POINTONSURFACE => ST_PointOnSurface

        SDO_UNION => ST_Union

        SDO_XOR => ST_SymDifference



  

The hidden part of the magic

● Aka, the todo list:
– Use regexp only => need a real PL/SQL parser/lexer

● Ora2Pg replace sometime SELECT by PERFORM wrongly
● Replacement of complex form of code

– Hash and multicolumn partitioning

– Add a mechanism to handle global variables in packages

– Allow user custom function to modify data on the fly

– Allow incremental data migration

– Embedded SQL code formatter

– Parallelized creation of indexes and constraint

– ...



  

Tools equivalence 1/3

● SQLPLUS: PSQL but much more
● TOAD / Oracle SQL Developper: TORA (http://torasql.com/) or pgAdmin
● EXPLAIN PLAN: EXPLAIN ANALYZE
● ANALYZE TABLE: ANALYZE
● Cold backup: both are file system backup
● Hot backup: REDOLOGS = ARCHIVELOGS
● Logical Export: exp = pg_dump
● Logical Import: imp = pg_restore or psql
● SQL Loader: pgLoader (http://pgloader.io/)
● RMAN: Barman (http://www.pgbarman.org/) or Pitrery (

https://dalibo.github.io/pitrery/)
● AUDIT TRAIL: pgAudit (https://github.com/2ndQuadrant/pgaudit) 

http://torasql.com/
http://pgloader.io/
http://www.pgbarman.org/
https://dalibo.github.io/pitrery/
https://github.com/2ndQuadrant/pgaudit


  

● Pooling / Dispatcher:
– PgBouncer (http://pgfoundry.org/projects/pgbouncer)

– PgPool (http://www.pgpool.net/)

● Active Data Guard:
– PostgreSQL master / slave replication

– Slony (http://slony.info/)

● Replication master / master:
– PostgreSQL-XC (http://sourceforge.net/projects/postgres-xc/)

– Bucardo (https://bucardo.org/)

● Logical replication:
– PostgreSQL 9.5 / 10 ?

– Slony

● Official binary packages for all these projects can be found at http://yum.postgresql.org 
or  http://apt.postgresql.org

Tools equivalence 2/3

http://pgfoundry.org/projects/pgbouncer
http://www.pgpool.net/
http://slony.info/
http://sourceforge.net/projects/postgres-xc/
https://bucardo.org/
http://yum.postgresql.org/
http://apt.postgresql.org/


  

Tools equivalence 3/3

● RAC Horizontal scaling: PostgreSQL-XC – PostgreSQL-XL -   
plProxy, pg_shard

● Oracle => Postgres Plus Advanced Server
– Same as PostgreSQL but with proprietary code and database feature 

compatibility for Oracle.

– Compatible with applications written for Oracle.

– No need to rewrite PL/SQL into PLPGSQL

– Applications written for Oracle run on Postgres Plus Advanced Server 
without modification.

– http://www.enterprisedb.com/

● This is not an exhaustive list of the existing tools, there's much more 
interesting projects. 

http://www.enterprisedb.com/


  

Monitoring / Audit tools
● PgBadger: A fast PostgreSQL log analyzer

– http://dalibo.github.io/pgbadger/

● PgCluu: PostgreSQL and system performances monitoring and auditing tool
– http://pgcluu.darold.net/

● Powa: PostgreSQL Workload Analyzer. Gathers performance stats and provides real-time charts and 
graphs to help monitor and tune your PostgreSQL servers. Similar to Oracle AWR.
– http://dalibo.github.io/powa/

● PgObserver: monitor performance metrics of different PostgreSQL clusters.
– http://zalando.github.io/PGObserver/

● OPM: Open PostgreSQL Monitoring. Gather stats, display dashboards and send warnings when something 
goes wrong. Tend to be similar to Oracle Grid Control.
– http://opm.io/

● check_postgres: script for monitoring various attributes of your database. It is designed to work with 
Nagios, MRTG, or in standalone scripts.
– https://bucardo.org/wiki/Check_postgres

● Pgwatch: monitor PostgreSQL databases and provides a fast and efficient overview of what is really going 
on.
– http://www.cybertec.at/en/products/pgwatch-cybertec-enterprise-postgresql-monitor/

● More tools at https://wiki.postgresql.org/wiki/Monitoring

http://dalibo.github.io/pgbadger/
http://pgcluu.darold.net/
http://dalibo.github.io/powa/
http://zalando.github.io/PGObserver/
http://opm.io/
https://bucardo.org/wiki/Check_postgres
http://www.cybertec.at/en/products/pgwatch-cybertec-enterprise-postgresql-monitor/
https://wiki.postgresql.org/wiki/Monitoring


  

What else ?

● Other OSS tool that can help to migrate 
– Pentaho Kettle

● http://community.pentaho.com/projects/data-integration/

– JTS Topology Suite for spatial data import
● http://www.vividsolutions.com/jts/JTSHome.htm

– oracle_fdw, with Oracle spatial support since 1.1.0
● http://pgxn.org/dist/oracle_fdw/

– Orafce, Oracle's compatibility functions and packages
● http://pgxn.org/dist/orafce/

● Don't forget to migrate your SQL Server database too :-)
● https://github.com/dalibo/sqlserver2pgsql

http://community.pentaho.com/projects/data-integration/
http://www.vividsolutions.com/jts/JTSHome.htm
http://pgxn.org/dist/oracle_fdw/
http://pgxn.org/dist/orafce/
https://github.com/dalibo/sqlserver2pgsql


  

You are not alone !

Community support on Ora2Pg :
– Any PostgreSQL's forum can help

– Github for feature requests

– Github issues and bugs reports
● https://github.com/darold/ora2pg

– Feedback / suggestion to < gilles@darold.net >

Buy professional help to migrate and commercial support :
– Any PostgreSQL company near from you listed in 

http://www.postgresql.org/support/professional_support/

– Support the community !

https://github.com/darold/ora2pg
mailto:gilles@darold.net
http://www.postgresql.org/support/professional_support/
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Thanks for your attention

Question ?
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